Reversible spin textures with giant spin splitting in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Ga</mml:mi><mml:mi>X</mml:mi><mml:mi>Y</mml:mi></mml:mrow></mml:math> ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>X</mml:mi><mml:mo>=</mml:mo><mml:mi>Se</mml:mi></mml:mrow></mml:math> , Te; <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Y</mml:mi><mml:mo>=</mml:mo><mml:mi>Cl</mml:mi></mml:…

نویسندگان

چکیده

The coexistence of ferroelectricity and spin-orbit coupling (SOC) in noncentrosymmetric systems may allow for a nonvolatile control spin degrees freedom by switching the ferroelectric polarization through well-known Rashba effect (FRE). Although FER has been widely observed bulk systems, its existence two-dimensional (2D) is still very rarely discovered. Based on first-principles calculations, supplemented with $\vec{k}\cdot\vec{p}$ analysis, we report emergence FRE Ga$XY$ ($X$= Se, Te; $Y$= Cl, Br, I) monolayer compounds, new class 2D materials having in-plane ferroelectricity. Due to large polarization, giant out-of-plane topmost valence band, producing unidirectional textures momentum space. Importantly, such textures, which can host long-lived helical mode known as persistent helix, be fully reversed direction polarization. Thus, our findings open avenues interplay between materials, useful efficient non-volatile spintronic devices.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane ...

متن کامل

Silicon surface with giant spin splitting.

We demonstrate a giant Rashba-type spin splitting on a semiconducting substrate by means of a Bi-trimer adlayer on a Si(111) wafer. The in-plane inversion symmetry is broken inducing a giant spin splitting with a Rashba energy of about 140 meV, much larger than what has previously been reported for any semiconductor heterostructure. The separation of the electronic states is larger than their l...

متن کامل

Giant spin splitting through surface alloying.

The long-range ordered surface alloy Bi/Ag(111) is found to exhibit a giant spin splitting of its surface electronic structure due to spin-orbit coupling, as is determined by angle-resolved photoelectron spectroscopy. First-principles electronic structure calculations fully confirm the experimental findings. The effect is brought about by a strong in-plane gradient of the crystal potential in t...

متن کامل

Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO3.

Two-dimensional electron gases (2DEGs) forming at the interfaces of transition metal oxides exhibit a range of properties, including tunable insulator-superconductor-metal transitions, large magnetoresistance, coexisting ferromagnetism and superconductivity, and a spin splitting of a few meV (refs 10, 11). Strontium titanate (SrTiO3), the cornerstone of such oxide-based electronics, is a transp...

متن کامل

One-dimensional edge states with giant spin splitting in a bismuth thin film.

To realize a one-dimensional (1D) system with strong spin-orbit coupling is a big challenge in modern physics, since the electrons in such a system are predicted to exhibit exotic properties unexpected from the 2D or 3D counterparts, while it was difficult to realize genuine physical properties inherent to the 1D system. We demonstrate the first experimental result that directly determines the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2021

ISSN: ['1098-0121', '1550-235X', '1538-4489']

DOI: https://doi.org/10.1103/physrevb.104.115145